



# Cybersecurity aspects in the development of a medical device

**State of the Art and Challenges** 

Swiss Medtech SaMD Event, 25.03.2021

Matthias Steck, Senior Software Engineer matthias.steck@iss-ag.ch





#### **Content**

Basic Concepts
Regulatory Requirements
Standards and Standardization
Hints from our experience





#### **Disclaimer**

The views and opinions expressed in the following presentation are those of the individual author.

#### Copyright

The slides of this presentation must not be used without permission of the author. If they are used by other presenters, the author and the event where they were presented must be mentioned.





# Introduction

# **Basic Concepts**





# **Cybersecurity – Cybercrime**

As usual: **someone has** something of value (assets) that **someone else wants**:

Processing → crypto mining

- **Storage** → file dump (e.g. child porn, warez)

- **Information** → steal (espionage), hold hostage (ransomware), damage (vandalism, sabotage)

- **Bandwidth** → attack other targets

- **Services** → use for free, prevent use (denial of service)

**Multiplication possible** — automatically attack many targets — improved return on investment: with multiple attacks (e.g. ransomware) some are bound to succeed.

**Note:** Cybercrime is a billion dollar industry attracting a lot of professionals and state-sponsored actors





# **Cybersecurity – Cyberwar**

**Political motivation,** same basic principle; someone has, someone else wants:

- **Active warfare** (e.g. Israel Iran, China Rest of the world)
- **Preparation** (e.g. USA "I hunt sysadmins", attain strike capability)
- **Clandestine operations** (pretty much everyone)
- **Economic warfare** (e.g. USA China)

Mostly **state actors** (APT – Advanced Persistent Threat, usually "deniable assets").

Preparation for TAO (Tailored Access Operations), Sabotage, False flag operations, offensive and defensive capabilities.

**Note:** High level of skill, budget, infrastructure, persistence. Virtually impossible to defend against an active, targeted attack from an APT. Still, we can make their life harder and try to limit the impact.





# **Cybersecurity – Medical Devices**

Attacks on medical devices and healthcare providers used to be accidental / opportunistic; i.e. a medical device / system was just another networked computer.

**Targeted attacks**, specifically ransomware, **are becoming the norm**; the health sector is an easy target: security has been neglected for a long time (manufacturers, regulators, and operators), IT systems in use are complex and long-lived, higher willingness and ability to pay ransom.







**Note:** Cybersecurity is not a new thing, other industries have been targeted for decades. Healthcare is lagging behind while the (cyber-)world has become increasingly more dangerous.







# **Cybersecurity – Basic Principles applied to Medical Devices**

#### Integrity

The integrity of the medical device is protected; e.g. the software, configuration data, patient data are protected against accidental or malicious modification and corruption → the device works correctly

#### **Availability**

The medical device is available when needed

#### Confidentiality

The medical device or system protects information from unauthorized access; e.g. patient information and health records

**Note:** For medical devices, the priorities differ from normal InfoSec: a device that is available is of no use if it is unsafe because integrity has been lost, while confidentiality usually has the least impact on patient safety.





# Take home message

- Medical devices are targets
   (even if it is just a means to an end)
- Medical device manufacturers are targets (supply chain attacks, industrial espionage)
- Your customers are targets
- Attackers are many





# **Regulatory Requirements**

#### **An Overview**

Two different perspectives to consider



**Manufacturers** 



**Customers** 









#### **Legislation – Strategic Level**

| Legislation            | Title                                                                          | Applies to             | Core Topics             |
|------------------------|--------------------------------------------------------------------------------|------------------------|-------------------------|
| NCS                    | National Cybersecurity Strategy                                                | Switzerland            | Critical Infrastructure |
| NIS Directive          | Network Information Security Directive                                         | European Member States | Critical Infrastructure |
| KRITIS /<br>BSI-Gesetz | Verordnung zur Bestimmung<br>Kritischer Infrastrukturen nach<br>dem BSI-Gesetz | Germany                | Critical Infrastructure |
| 2008/114/EG            | Ermittlung und Ausweisung<br>europäischer kritischer<br>Infrastrukturen        | European Member States | Critical Infrastructure |

**Note:** Healthcare is critical infrastructure, where healthcare usually means healthcare delivery organizations (HDO) i.e. hospitals, doctors offices

**Note:** These directives and regulations have no or only very indirect impact on MD







#### **Legislation – Industry Level**

| Legislation         | Title                                                                  | Applies to                          | Core Topics                                                     |  |
|---------------------|------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------|--|
| MDR                 | Medical Device Regulation                                              | Europe, Medical Devices             | Risk Management, Information<br>Basic Safety / Safety Lifecycle |  |
| MedDO               | Medical Devices Ordinance                                              | Switzerland, Medical Devices        | Risk Management, Information<br>Basic Safety / Safety Lifecycle |  |
| BSI Gesetz /<br>B3S | Branchenspezifischer<br>Sicherheitsstandard (B3S) für<br>Krankenhäuser | Germany, Hospitals (HDO, Operators) | Risk Management,<br>Cybersecurity                               |  |
| 21CFR820.30         | Quality System Regulation                                              | USA, Medical Devices                | Risk Management,<br>Safety Lifecycle                            |  |
| GDPR                | General Data Protection<br>Regulation                                  | Europe++, Personal information      | Privacy                                                         |  |

**Note:** These directives and regulations do have an impact on MD









# **Medical Device Regulation (MDR)**

#### In contrast to the MDD, the MDR directly addresses cybersecurity issues

General Safety and Performance Requirements:

- 17.2. ...software shall be developed and manufactured in accordance with the **state of the art** taking into account the principles of development life cycle, risk management, including **information security** ...
- 17.4. Manufacturers shall **set out minimum requirements** concerning hardware, **IT networks characteristics** and **IT security measures**, including protection against unauthorized access, necessary to run the software as intended.





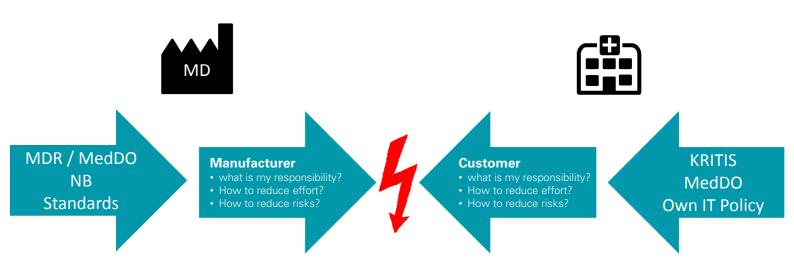




# **Legislation in Switzerland – Outlook on the «MDR» Update**

The new version of the MedDO (MepV) will place responsibility for cybersecurity on the health delivery organizations:

#### Art. 74 Cybersicherheit


«Gesundheitseinrichtungen treffen alle technischen und organisatorischen Massnahmen, die nach dem Stand der Technik notwendig sind, um bei netzwerkfähigen Produkten den Schutz vor elektronischen Angriffen und Zugriffen sicherzustellen.»

(will come into force on the 26th of May 2021)





#### Where does that leave us?



Usually, the customer is in a strong position, meaning <u>we</u> (industry) have to move





# Take home message

#### Direct and indirect requirements for your MD

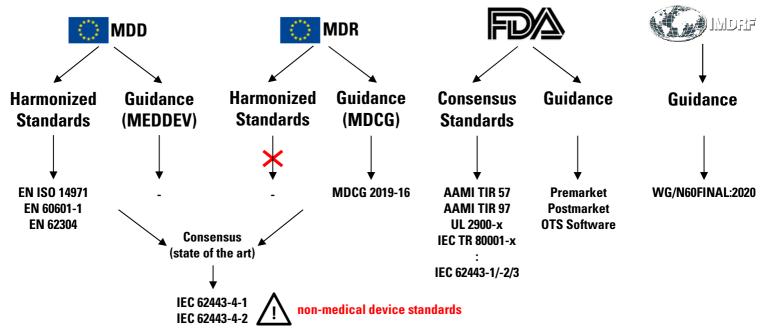
#### **Legislation revolves around (overlapping) core topics:**

- Risk Management and Control
- Security Life Cycle
- Information from manufacturer to integrators, operators, and users
- Post Market Activities
- Vulnerability Disclosure

**As usual:** Legislation provides us with the «why» and «what», while standards and guidelines are supposed to provide us with the «how».






# **Standards and Standardization**

#### **An Overview**





#### **The Challenge: The Current Situation**







# The Solution: Bridging the Gap

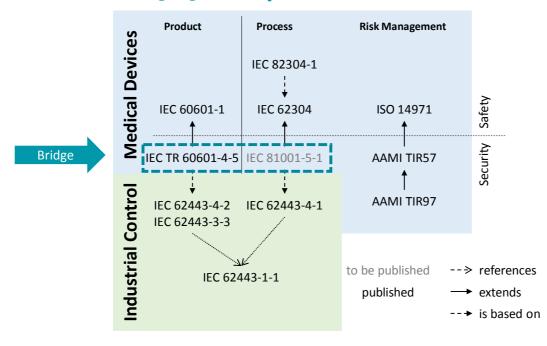


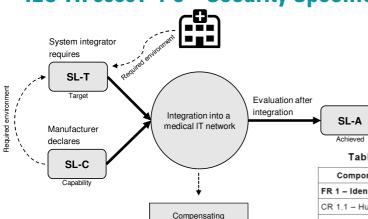



Table 1 – Mapping of single requirements to capability security levels (SL-C)

| Component requirements (CR) and requirement enhancements (RE)          |          | SL-C 2 | SL-C 3 | SL-C 4 |  |  |
|------------------------------------------------------------------------|----------|--------|--------|--------|--|--|
| FR 1 – Identification and AUTHENTICATION control (IAC)                 |          |        |        |        |  |  |
| CR 1.1 - Human user identification and AUTHENTICATION                  | <b>✓</b> | ✓      | ✓      | ✓      |  |  |
| RE (1) Unique identification and AUTHENTICATION                        |          | ✓      | ✓      | ✓      |  |  |
| RE (2) Multifactor AUTHENTICATION for all interfaces                   |          |        | ✓      | ✓      |  |  |
| CR 1.2 - Software PROCESS and device identification and AUTHENTICATION |          | ✓      | ✓      | ✓      |  |  |
| RE (1) Unique identification and AUTHENTICATION <sup>a</sup>           |          |        | ✓      | ✓      |  |  |
| CR 1.3 – Account management                                            | ✓        | ✓      | ✓      | ✓      |  |  |
| CR 1.4 – Identifier management                                         | ✓        | ✓      | ✓      | ✓      |  |  |
| CR 1.5 – Authenticator management                                      | ✓        | ✓      | ✓      | ✓      |  |  |
| RE (1) Hardware SECURITY for authenticators                            |          |        | ✓      | ✓      |  |  |

Source: IEC 60601-4-5:2021




defines product requirements and a method of cooperation





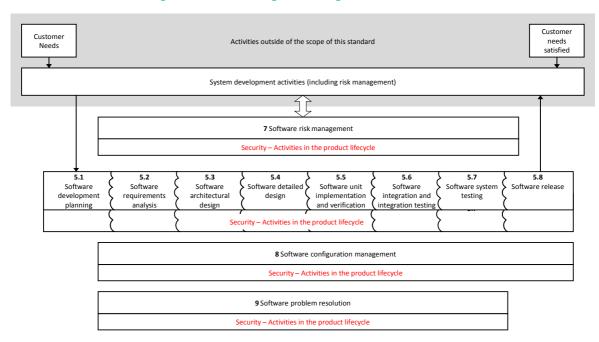


# **IEC TR 60601-4-5 – Security Specifications**



countermeasures

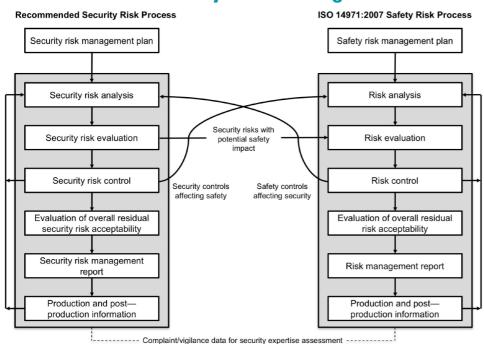
Table 1 - Mapping of single requirements to capability security levels (SL-C)

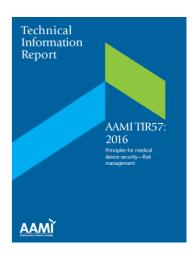

| Component requirements (CR) and requirement enhancements (RE)          | SL-C 1   | SL-C 2 | SL-C 3 | SL-C 4 |  |
|------------------------------------------------------------------------|----------|--------|--------|--------|--|
| FR 1 – Identification and AUTHENTICATION control (IAC)                 |          |        |        |        |  |
| CR 1.1 – Human user identification and AUTHENTICATION                  | ✓        | ✓      | ✓      | ✓      |  |
| RE (1) Unique identification and AUTHENTICATION                        |          | ✓      | ✓      | ✓      |  |
| RE (2) Multifactor AUTHENTICATION for all interfaces                   |          |        | ✓      | ✓      |  |
| CR 1.2 - Software PROCESS and device identification and AUTHENTICATION |          | ✓      | ✓      | ✓      |  |
| RE (1) Unique identification and AUTHENTICATION <sup>a</sup>           |          |        | ✓      | ✓      |  |
| CR 1.3 – Account management                                            | ✓        | ✓      | ✓      | ✓      |  |
| CR 1.4 – Identifier management                                         | <b>✓</b> | ✓      | ✓      | ✓      |  |
| CR 1.5 – Authenticator management                                      | ✓        | ✓      | ✓      | ✓      |  |
| RE (1) Hardware SECURITY for authenticators                            |          |        | ✓      | ✓      |  |
|                                                                        |          |        |        |        |  |



# IEC 80001-5-1 extends IEC 62304 lifecycle processes

Source: IEC/DIS 81001-5-1


# IEC 81001-5-1 (draft) — Cybersecurity Lifecycle








#### **AAMI TIR 57 – Security Risk Management**





Source: AAMI TIR57:2016





# In Practice

# Hints from our experience





# Notified Bodies – What did they want to know?

#### Focused on MDR requirements

- Risk management documentation
- Threat analysis (assets, vulnerabilities, threats)
- Measures to prevent unauthorized access
- Measures to **ensure confidentiality** of personally identifiably information
- Measures to **ensure integrity** of data and systems
- Measures to **ensure availability** of data and systems
- Risk management of service and maintenance, including software updates
- Measures to ensure detection, response, and recovery
- Cybersecurity development process





#### What to do?

#### If you're not already doing it:

- Perform threat analysis (assets, vulnerabilities, impact)
- Use risk management to:
  - Identify and analyse security risks with impact to safety
  - Implement risk control measures and security controls
  - Make sure security controls don't negatively impact safety
- Extend Post Market activities to cover SOUP (repeat it on a regular base)
- Provide information to integrators and users
- Be prepared for security vulnerabilities
- Work with authorities

#### Ask us if you need support.





#### Questions

